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Abstract

A formulation, based on the semi-analytical finite element method, is proposed for elastic conical shells conveying fluids.

The structural equations are based on the shell element proposed by Ramasamy and Ganesan [Finite element analysis of

fluid-filled isotropic cylindrical shells with constrained viscoelastic damping, Computers & Structures 70 (1998) 363–376]

while the fluid model is based on velocity potential formulation used by Jayaraj et al. [A semi-analytical coupled finite

element formulation for composite shells conveying fluids, Journal of Sound and Vibration 258(2) (2002) 287–307].

Dynamic pressure acting on the walls is derived from Bernoulli’s equation. By imposing the requirement that the normal

component of velocity of the solid and fluid are equal leads to fluid–structure coupling. The computer code developed has

been validated using results available in the literature for cylindrical shells conveying fluid. The study has been carried out

for conical shells of different cone angles and for boundary condition like clamped–clamped, simply supported and

clamped free. In general, instability occurs at a critical fluid velocity corresponding to the shell circumferential mode with

the lowest natural frequency. Critical fluid velocities are lower than that of equivalent cylindrical shells. This result holds

good for all boundary conditions.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The dynamics of pipes conveying fluid has been extensively investigated [1,2] as seen from the
comprehensive review paper by Paı̈doussis and Li [3] and the recent book by Paı̈doussis [4]. However,
most of the investigations have been based on analytical models for the structure and/or fluid. Shells
conveying fluids have attracted relatively less attention. Ramasamy and Ganesan [1] studied the vibration
characteristics of fluid-filled shells with a constrained viscoelastic layer based on Wilkins theory [5]. However,
they did not consider fluid flow. Selman and Lakis [6] have developed a theory for the determination
of the effects of flowing fluid on the vibration characteristics of an open anisotropic cylindrical shell
submerged in fluid and subjected simultaneously to an external and internal flow. They have used an
analytical formulation to solve the fluid part. Chang and Chiou [7] studied the natural frequencies and
critical velocities of laminated circular cylindrical shells with fixed ends conveying fluid using a hybrid
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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FE/analytical method. They used a Mindlin-type first-order transverse shear deformable cylindrical shell
theory for the structure and an analytical method for the fluid. For complex piping geometry, analytical
techniques cannot be used.

A number of investigators have proposed finite element formulations for fluid flow problems. For instance,
Everstine [8] proposed a velocity potential formulation for a symmetric finite element solution of
transient wave propagation problems. Lakis et al. [9] have carried out dynamic analysis of anisotropic
fluid-filled conical shells. Even though their formulation includes the influence of flow terms their study is
limited to quiescent fluid. From the literature survey, it is found that there is no work dealing with
dynamic analysis of conical shells conveying fluid. Since conical shells are axisymmetric a semi-analytical finite
element formulation would be more useful. It is noted from the literature that pipe instability occurs
predominantly in the bending mode (first circumferential mode, m ¼ 1). In contrast the behavior of a conical
shell may not be similar to that of a pipe. The main objective of this paper is to bring out the difference
between the behavior cylindrical and conical shells conveying fluid. Hence in the present study, an analysis is
carried out for different boundary conditions of the conical shell. In addition the paper aims to establish a
relation between the instability and the circumferential modes of the shell as a function of boundary
conditions, geometry.

2. Finite element formulation

2.1. Structure

The (s, y, z) coordinate system for general shells of revolution is illustrated in Fig. 1. By setting the
value of the principal radius of curvature Rf equal to infinity and the other principal radius of
curvature Ry equal to a finite radius equal to r/sinf, where r is the radius that vary linearly
along the length depending upon the vertex angle (a), then the geometry resembles a conical
shell as illustrated in Fig. 2. The displacements according to the first-order shear deformation theory are
expressed as

uðs; y; z; tÞ ¼ uoðs; y; tÞ þ zcsðs; y; tÞ, (1a)

vðs; y; z; tÞ ¼ voðs; y; tÞ þ zcyðs; y; tÞ, (1b)

wðs; y; z; tÞ ¼ woðs; y; tÞ, (1c)

where uo, vo, wo are displacement of mid-surface along the s, y and z directions and cs and cy are rota-
tions of the normal to the mid-surface along s and y axes, respectively. In the semi-analytical method, the
generalized displacement field is assumed to depend in the circumferential direction and expressed using
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Fig. 1. General shell of revolution.
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Fig. 2. Geometry of conical shell.
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Fourier-series as follows:
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where ‘m’ indicates the harmonic number (or circumferential mode number).
The semi-analytical finite element formulation for general shells of revolution is based on the first-order

shear deformation theory. The structural stiffness matrix is derived from the strain energy, Ramasamy and
Ganesan [1].

The kinematic relation for a doubly curved shell of revolution in the (s, y, Z) coordinate based on FSDT are
as follows:

�ss ¼
1

A1
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1
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yz, (3a,b)

�yy ¼
1

A2
ð�o

yy þ zk1yÞ; gsz ¼
1

A1
go

sz, (3c,d)

gsy ¼
1

A1

1

A2
ðgo

sy þ zk1syÞ, (3e)

where

1

A1
¼

1

ð1þ ðz=RfÞÞ
and

1

A2
¼

1

ð1þ ðz=RyÞÞ

in the above equations Rf and Ry are the principle radii of curvature of the shell as illustrated in Fig. 1 and z is
the thickness in z-direction. The total strains are denoted as �ss; �yy; gyz; gsz and gsy; which comprise of the
normal strains and the shear strains:�o

ss; �
o
yy; g

o
yz; g
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sz; g
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curvature of the mid-surface. For a general shell of revolution these strain components are given below:
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Accordingly, it follows that the strain vector will comprise of
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where
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¼ f �

o
ss �o

yy go
sy g; ðj1Þ

T
¼ f k1s k1y k1sy g and ðcoÞ

T
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In shell analyses, it is generally convenient to deal with the stress resultants and moment resultants rather
than directly the stresses. Thus when each component of the stress vector, rT ¼ f sss syy tyz tsz tsy g,
integrated over the thickness of the shell will comprise of the stress resultants and moment resultants, and
these are referred through the generalized stress vector represented as

N̄
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8><
>:
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>;, (7)

where
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n o
. (8)

It is clear that from Fig. 1, that by setting the value of the principal radius of curvature Rf equal to
infinity,f equal to (901�a) and the other principal radius of curvature Ry equal to a finite radius equal to
r/sinf where r is the radius that vary linearly along the length depending upon the vertex angle (a), then the
geometry resembles a conical shell. Considering these simplifications, the general strain displacement relations
are used to formulate the stiffness and mass matrix.

A three-node isoparametric line element is used along the s-coordinate to generate the finite element mesh
for the conical shell (see Fig. 3). Each node has five degrees of freedom (dofs). The displacements parameters
associated with the element are

dTe ¼ fu1; v1;w1;cs1;cy1; u2; v2;w2;cs2;cy2; u3; v3;w3;cs3;cy3g. (9)

The subscripts 1–3 stand for the three nodes of the element. The shape functions Ni in terms of the
isoparametric axial coordinate b ¼ s̄=l (where s̄ denotes the distance of a point on the element along the
s-coordinate and l is the length of the element) are given by

N1 ¼
ðb2 � bÞ

2
; N2 ¼ ð1� b2Þ and N3 ¼

ðb2 þ bÞ
2

. (10)

Displacement within the element are interpolated from nodal dof vector de

u ¼ Nde, (11)

where uT ¼ f u v w g. Strains are obtained from displacements by differentiation. Thus � ¼ q½ �u yields
� ¼ B�de, where B

� ¼ q½ �N and q½ � is the differential operator matrix given by the strain displacement relations.
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Fig. 3. Discretization of structure (3-noded isoparametric line and fluid part 8-noded isoparametric element).

D. Senthil Kumar, N. Ganesan / Journal of Sound and Vibration 310 (2008) 38–5742
The stress strain relation for a shell lamina can be expressed as, r ¼ Q��, where Q� ¼ T�1QT�T represents
the transformed reduced stiffness where T�1 is the coordinate transformation matrix from the material
coordinates to shell coordinates, Q denotes the reduced stiffness. Reader can refer to Jones [10] and
Decolon [11] for details of constitutive matrix. In the case of shell analysis where one refers the strain
with respect to mid-surface, then the generalized stresses are related through the integrated shell stiffness
as follows:
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>:
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or N̄
�
¼ D̄ e, the integrated transformed reduced shell stiffness are obtained as follows:

ðAij ;Bij ;Dij ;F ijÞ ¼

Z þðh=2Þ
�ðh=2Þ

Q̄ijð1; z; z
2; z3Þdz, (13)

where i ¼ 1, 2 and 6 and j ¼ 1, 2 and 6. (Note: Q̄ij , tensorial notation, andQ, matrix notation, mean the same).
Aij are extensional stiffness, Bij are the bending–extensional coupling stiffness, Dij are bending stiffness and are
the thickness shear stiffness. The stiffness matrix is obtained from the strain energy F ij as

U1 ¼
1
2
dTe kede, (14)

where ke is the elemental stiffness matrix corresponding to the mth harmonic and is computed as follows:

ke ¼

Z
A

B�
T

D̄ B�rdsdy, (15)

where B* is the strain–displacement matrix of the shell. The element stiffness matrix is assembled using
standard assembly procedure in finite element analysis to obtain the global stiffness matrix, Kuu ¼ Ske. Owing
to orthogonality principle the stiffness matrix become decoupled for each circumferential harmonic.

The constitutive matrix D̄ in Eq (15) consisting of various integrated shell stiffness: Aij ;Bij ;Dij and F ij. Shear
correction factor equal to 5/6 is used.

The mass matrix is obtained from the kinetic energy of the shell continuum, the kinetic energy is

KE ¼
r
2

Z
v

ð _u2 þ _v2 þ _w2ÞdV ¼
r
2

Z
v

_d
� �T _d

� �
dV . (16)
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Using Eqs. (9) and (10) the kinetic energy will be

KE ¼ 1
2
dTe mede, (17)

where me is the element mass matrix given by

me ¼ r
Z

v

NTNdV . (18)

2.2. Finite element formulation for compressible fluid

A semi-analytical, eight-noded annular ring element is used for discretizing the fluid domain. The governing
differential equation for the fluid region is popularly called the wave equation. It denotes the phenomenon in
which the energy is propagated by the waves and is applied to problems of sound propagation, sloshing of
liquid and fluid–structure interaction. For studying the dynamic analysis of a divergent conical shell conveying
fluid velocity potential is the nodal dof. The pressure in excess of hydrostatic pressure, p, is associated with the
motion of the fluid. This pressure (p) is given by the Bernoulli’s equation.

The following assumptions are made in deriving Eq. (1) the fluid flow is potential, (2) small deformations for
the structure, i.e. linear, (3) flow is inviscid, irrotational and isentropic and fluid pressure is normal to the shell
wall, (4) fluid is compressible and (5) there is no flow separation or cavitations, (5) the fluid mean velocity
distribution is assumed to be constant across a shell section. Further, the velocity potential should satisfy the
wave equation shown below:

r2f�
1

c2
q
qt
þ

Q

A

q
qx

� �2

f ¼ 0, (19)

where f is the velocity potential, c the velocity of sound, Q the discharge, A the area of cross-section of the
element at the middle. At any given moment the flow (Q) is constant across all the section along the cone.
Hence, the average flow velocity in the element is given by

Ux ¼
Q

A
, (20)

where Ux, is the mean axial flow velocity of the fluid:

V x ¼
Q

A
þ

qf
qx
; Vy ¼

1

R

qf
qy
; Vr ¼

qf
qr

. (21)

The radial velocity of the fluid must be equal to the instantaneous velocity of the shell. This will satisfy
the impermeability or dynamic boundary conditions, which ensures contact between the shell and the fluid.
That is

V r ¼
qf
qr

����
r¼a

¼
qw

qt
þ

Q

A

qw

qx
. (22)

Bernoulli’s equation is used to compute the pressure exerted by the fluid on the shell wall. For unsteady
flow

qf
qt
þ

1

2
V 2 þ

P

r
¼

Ps

r
, (23)

where V 2 ¼ V2
x þ V2

y þ V 2
r and Ps is the stagnation pressure. Now P can be written as the sum of a mean

pressure P̄ and the perturbation pressure p:

P ¼ P̄þ p. (24)

The nonlinear terms in V2 are neglected for small deformations we get

V 2 ffi
Q

A

� �2

þ 2
Q

A

qf
qx

, (25)
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p ¼ �r
qf
qt
þ

Q

A

qf
qx

� �
. (26)

A Galerkin weighted residual approach is used to formulate the finite element form of the governing wave
equation in cylindrical coordinates. The result of the manipulations is shown:Z
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where the weighting function Nf is the fluid shape functions given in Ref. [12]. The variation of velocity
potential is expressed in Fourier series in the y direction. The first term of Eq. (28) is rewritten using the fluid
shell interface boundary condition of equation asZ

S

NT
f rf � ndS ¼

Z
NT

f N̄ dsf _Ueg þ
Q

A

Z
NT

f

qN̄

qx
dSfUeg, (29)

where N̄ is the w component of the shell shape function and n the unit normal vector to the structure. Similarly
from Eq. (26), the pressure acting on the fluid structure interface can be converted to the finite element equationsZ

S
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Trf
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Now the complete fluid–structure finite element equation is
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where
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Rewriting the above equation in state-space form by letting fag ¼ f u f _u _f gT

l
�C� �M�

M� 0

� �
fag ¼

K� 0

0 M�

� �
fag, (32)

where

M� ¼
Muu 0

0 Gff

� �
; K� ¼

Kuu Kuf

�Kfu Hff � Iff

" #
; C� ¼

0 Cuf

�Cfu
�Cff

" #
.

A semi-analytical finite element formulation for compressible flow through shell is formulated. The shell
and fluid motion are coupled by the off diagonal terms of the damping and stiffness matrices. For stationary
fluids the coupling in stiffness vanishes. The equation is converted to state-space form Eq. (32) is solved for the
eigenvalues using LAPACK routine, DGEGV [13].
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3. Validation

In the present study, the computer code is developed for a conical shell conveying fluid, appropriately
accounting for variation of mean velocity along the cone. Owing to non-availability of literature on conical
shells conveying fluid, it was felt that the formulation could be validated by making comparison between
the results obtained from the present code for cylinder (a ¼ 01), and those reported by Ravikiran Kadoli [14]
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who has studied the behavior of cylindrical shell conveying fluid. Shell is made up of mild steel with l/a ¼ 5.21,
a/h ¼ 584 and clamped–clamped boundary condition. The study has been carried out for first circum-
ferential modes for various axial modes. The variation of dimensionless frequency versus dimensionless
velocity has been compared in Fig. 4 for the first three axial modes associated with circumferential
harmonics 1. There is a very good correlation between results of present study and that of Ravikiran
Kadoli [14].
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4. Results and discussion

4.1. Instability studies on clamped– clamped shell

The main objective of the present study is to establish a correlation between the critical discharge and the
natural frequency characteristics of the conical shells conveying fluid. An attempt is made to compare the
behavior of conical and cylindrical shells. In order to compare the instability behavior of conical shell with
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Fig. 8. Frequencies (Hz) and critical velocities (m/s) of mild steel conical shell for different vertex angle (a ¼ 101, 301, 601), with l/a ¼ 1.04,

a/h ¼ 584, clamped–clamped boundary condition.
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that of equivalent cylinder shell, critical discharge value (Qcri) is divided by the middle cross-sectional area of
the cone, which gives critical velocity (Ucri). For a conical shell of middle radius 0.876m (a), length 0.9144m
(l), vertex angle 101(a) and thickness 1.5mm (t) geometry, with clamped–clamped boundary condition is
studied. Twenty circumferential modes (m ¼ 1–20) and the corresponding three axial modes (n ¼ 1, 2, 3) are
calculated. It is noticed that the real eigenvalue decrease as the flow discharge increases and vanishes at critical
discharge (divergence-type instability). Further, the study is made for different cone vertex angle like 301, 601.
Eigenvalues obtained are expressed in dimensionless quantities as O ¼ ðo=ooÞ � 100, where oo ¼ Uo=rs, o is
the real natural frequency, rs is the small end radius of the shell, and Uo ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Eo=rs

p
, in which rs is the density

of the shell material and E0 is the Young’s modulus of the shell material.
The variation of flow discharge (Q) with dimensionless frequency (O) has been shown in Fig. 5(a). In

general, the buckling of shells is a complicated phenomenon and depending upon the type of loading,
boundary condition and parameters of the shell, it may occur at different circumferential modes. Divergence
buckling may perhaps be categorized as static buckling. An attempt is being made to correlate the buckling
behavior of the shells and the natural frequencies of the shell with respect to circumferential mode. To this end
the frequency characteristics of different shells were obtained (without flow). Fig. 5(b) shows the plot of
natural frequency as a function of circumferential mode for l/a ¼ 1.0438 and a/h ¼ 584, vertex angle (a ¼ 101)
for clamped–clamped boundary condition.

In addition, a detailed study was made on the instability behavior of different shells for all circumferential
modes. Some of the results are presented in Figs. 6 and 7. From this study, the circumferential mode
pertaining to the lowest critical discharge was identified and from the Fig. 8, it is found that there is a clear
correlation between the circumferential buckling modes of shells conveying fluids and the circumferential
mode at which the lowest natural frequency occurs for the fluid-filled shell.

The correlation is due to the fact that buckling mode will be related to stiffness of the conical shell and the
mode which has lowest frequency would be likely to buckle first, as its stiffness is lower. But in the case of cone
with vertex angle a ¼ 601, there is shift in the circumferential buckling mode from the circumferential mode at
which the lowest natural frequency occurs for the fluid-filled shells.

Results are summarized in Table 1. It is inferred that there is a good correlation between the circumferential
mode at which the lowest critical discharge occurs and the circumferential mode at which the shell has got the
lowest frequency.

A similar study for other boundary conditions such as clamped free and simply supported are described in
the next section.

4.2. Instability studies on clamped– free and simply supported shell

Study has been carried out on shells with simple supported boundary condition. The present study examines
the influence of flow discharge on the natural frequency characteristics of conical shell of l/a ¼ 1.04,
a/h ¼ 584, under simply supported boundary condition. Initially, the frequency characteristics of different
shells were obtained (without flow). Variation of dimensionless frequency with discharge for different
circumferential mode has been shown in Fig. 9. A similar work was carried out for clamped–free boundary
condition (Figs. 10–14). From Fig. 13, it is found that the same correlation repeats for clamped–free for
boundary condition. It is found that the above correlation is applicable to all boundary conditions in general.
Table 1

Comparison of circumferential mode having the lowest natural frequency for the fluid-filled shell and that of circumferential buckling

mode of conical shell conveying fluid in clamped–clamped boundary condition

Boundary

condition

Case (mild steel) l/a ¼ 1.04, a/h ¼ 584.

Cone angle (a) (deg)
Circumferential mode at which the lowest

natural frequency occurs

Circumferential mode at which the

buckling occurs

CC 10 12 12

30 10 11

60 7 5 or 6
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This may due to the fact that the stiffness of the shell for that particular circumferential mode which buckles
earlier is the least (Fig. 14).

Results are summarized in Table 2 and 3. From Table 2, it is observed that there is a good correlation
between the circumferential mode at which the lowest critical discharge occurs and the circumferential mode
at which the shell has got the lowest frequency. From the table, it is very clear that the correlation is true
for all cases.
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4.3. Comparison of dynamic behavior of conical and cylindrical shell

In order to compare the dynamic behavior of cylindrical and conical shells conveying fluid, the cross-
sectional area of the shell at half the length, l/a and a/h ratio has been taken same for both the shell. In the
case of cone critical discharge (Qcri) value is divided by the middle cross-sectional area of the cone will give the
critical velocity value (Ucri). For various shells considered the critical velocity value for various circumferential
modes are tabulated in Table 4. It has been found earlier that there is a clear correlation between the
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circumferential buckling modes of shells conveying fluids and the circumferential mode at which the lowest
natural frequency occurs for the fluid-filled shell. In addition to that, it is seen that as the vertex angle increases
the circumferential buckling mode as well as critical velocity value of that mode also comes down. For
example in Table 4, results are given for different shell under clamped–clamped boundary condition. For
cylinder the circumferential buckling mode (12,1) the critical velocity value is 91.26m/s. As vertex angle
increased to 601, corresponding circumferential buckling mode (5–7,1) the critical velocity value is 6.64m/s.

A similar work was carried out for clamped–free and simple supported boundary condition. From Tables 5
and 6, it is found that the same observation repeats for clamped–free and simple supported boundary
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condition. In general, critical velocity value decreases drastically if vertex angle is increased for all boundary
condition.

5. Conclusion

Conical shells conveying fluid find application in specific engineering fields. In the present study, the
dynamic analysis of conical shells conveying fluid has been studied by using semi-analytical finite element
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procedure. The study has been carried out shells having different cone angles. The behaviors of conical shells
have been compared with that of cylindrical shells. The following are the conclusion base on the present study:
1.
 There is a correlation between circumferential buckling mode of shells conveying fluid and the
circumferential mode at which the lowest frequency occurs for fluid-filled shells.
2.
 It is seen that as the vertex angle increases the circumferential buckling mode as well as the critical velocity
value of the mode also comes down.
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Fig. 14. Frequencies (Hz) and critical velocities (m/s) of mild steel conical shell for different vertex angle (a ¼ 101, 301, 601), with

l/a ¼ 1.04, a/h ¼ 584, clamped–free boundary condition.

Table 2

Comparison of circumferential mode having the lowest natural frequency for the fluid-filled shell and that of circumferential buckling

mode of conical shell conveying fluid in simple supported condition

Boundary

condition

Case (mild steel) l/a ¼ 1.04, a/h ¼ 584.

Cone angle (a) (deg)
Circumferential mode at which the lowest

natural frequency occurs

Circumferential mode at which the

buckling occurs

SS 10 10 10

30 9 9

60 7 4
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Table 3

Comparison of circumferential mode having the lowest natural frequency for the fluid-filled shell and that of circumferential buckling

mode of conical shell conveying fluid in clamped–free boundary condition

Boundary

condition

Case (mild steel) l/a ¼ 1.04, a/h ¼ 584.

Cone angle (a) (deg)
Circumferential mode at which the lowest

natural frequency occurs

Circumferential mode at which the

buckling occurs

CF 10 8 8

30 7 7

60 3 3

Table 4

Critical velocity value for vertex angle a ¼ 01, 101, 301, 601 under clamped–clamped boundary condition

Circumferential mode number (m) Critical flow velocity (Ucri), for cone vertex angle (a) clamped–clamped boundary condition

Cylinder (a ¼ 01) a ¼ 101 a ¼ 301 a ¼ 601

1 148.5 138.96 96.65 16.59

3 147.26 137.3 96.65 9.96

5 145.6 134.4 91.25 6.64

7 124.03 116.15 68.85 6.64

10 96.65 89.59 53.92 11.614

12 91.26 85.45 54.75 14.93

15 92.92 88.77 63.45 23.23

Table 5

Critical velocity value for vertex angle a ¼ 01, 101, 301, 601 under clamped–free boundary condition

Circumferential mode number (m) Critical flow velocity (ucri), for cone vertex angle (a) clamped–free boundary condition

Cylinder (a ¼ 01) a ¼ 101 a ¼ 301 a ¼ 601

1 148.5 138.1 97.06 7.46

3 147.67 137.7 84.62 3.32

5 114.49 92.08 44.79 4.97

7 82.96 63.87 32.35 6.64

8 80.47 61.39 34 7.45

10 89.6 78.81 48.12 10.77

15 91.2 87.93 63.87 21.53

Table 6

Critical velocity value for vertex angle a ¼ 01, 101, 301, 601 under simple supported boundary condition

Circumferential mode number (m) Critical flow velocity (ucri), for cone vertex angle (a) simple supported boundary condition

Cylinder (a ¼ 01) a ¼ 101 a ¼ 301 a ¼ 601

1 147.67 133.98 89.59 11.62

3 146.84 133.15 89.57 4.98

4 145.6 131.9 88.33 4.14

7 87.11 81.30 47.29 6.63

9 68.86 63.87 38.15 9.13

10 65.54 61.39 38.98 10.77

15 82.55 78.81 56.41 22.39
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